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THE PROBABILITY OF MULTIPLE CORRECT PACKET RECEPTIONS
IN A MULTIRECEIVER FREQUENCY-HOPPED

SPREAD-SPECTRUM SYSTEM

1. INTRODUCTION AND PROBLEM FORMULATION

An important quantity in spread-spectrum radio networks is the probability that

exactly I out of m packet transmissions are successful, given that k users attempt to

transmit their packets simultaneously; this quantity is denoted by P(, m - Ilk). This

quantity is essential for the integration of the first three layers (physical, data link, and

network layer) of the ISO network model for packet radio networks using spread-spectrum

signaling and forward-error-control and, as such, it enables the design and performance

evaluation of multiple-access protocols for such networks.

The integer m in P(l, m - 1lk) denotes the number of receivers of interest: in most

practical situations, m < k. Specifically, in problems involving multireception with a bank

of m receivers at a single locaLion, the probability mass function (pmf)

P(l,m-lk) for l-0,1,.-.,m and m<k

describes the multireceiver performance. Moreover, in problems in which the evaluation

of the throughput or delay of various packet radio network protocols is desirable,

P,(llk) = PT(lk - Ilk) = (k) P(lk - Ilk) for l =0,1...-,k

is required, where Pc(llk) denotes the probability of any l correct packet receptions out of

k simultaneous transmissions (see [1],[21).

Consequently, in practical spread-spectrum packet radio networks, there is an undis-

puted need to v-,;atthe probabilities P(l, m - ljk) and PT(i, m - (l) P ( m -

Ilk) (1 = 0, 1,., m and m < k) for different spreading signaling formats. data niodulatioln

schemes, and error-control coding schemes.

In this report, we evaluate these quantities for frequency-hopped (FH) spread-spectrum

multiple-access (SSMA) networks. Specifically, we develop an exact expression for P(1, m -
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Ilk) and an approximation based o. Gaussian multivariate densities. The exact expres-

sion is difficult to compute and its computational complexity grows exponentially with

m. By contrast, the Gaussian approximation is computationally efficient and its com-

plexity grows linearly with m. Numerical results obtained from these two methods are

compared with those obtained via the independence assumption method commonly

used in the literature [1,[23. This method assumes that packet errors among different

receivers are mutually independent, which greatly simplifies the computation. We further

establish that the independence assumption can be trusted in most cases and derive the

range of parameters in which each of the two approximations (Gaussian and independence)

is preferable.

Derivations and comparisons are carried out for FH/SS systems employing MFSK

modulation with noncoherent demodulation and Reed-Solomon (RS) (n, k,) forward error-

control coding with erasures-only, errors-only, and errors /erasures minimum-distance [3]

decoding. It is assumed that each RS symbol carries one M-ary symbol (i.e.. n = M), that

each FH dwell time (hop) carries one RS symbol, and that one RS codeword per packet is

transmitted. The frequency-hopping patterns of the different users are modeled as random

memoryless hopping patterns [4]. Thus, each of q available frequencies are visited with

equal probability and independently of each other during any dwell time (hop) by each user

and mutually independent hopping patterns are assigned to distinct users. The various

users are packet-synchronous but may be hop-asynchronous; in this context, both hop-

synchronous and hop-asynchronous FH/SSMA systems are considered. Also thermal noise

modeled as additive white Gaussian noise (AWGN) is incorporated in the analysis.

This report is organized as follows: In Section 2 exact expressions for P(l,m - Ilk)

are derived for all cases of interest enumerated above. In Section 3, the corresponding

expressions based on the Gaussian approximation technique are derived. In Section 4.

the approximation based on the independence assumption is cited. Numerical results and

comparisons of the three approaches are presented provided in Section 5. In Section 6,

coliclusiuiis are drawn.
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2. DERIVATION OF EXACT MULTIRECEPTION PROBABILITIES

We are interested in finding an exact expression for the probability P(l, m - Ilk) of

I receivers receiving correctly and m - I ones receiving erroneously, for a specific set of

receivers. It assumed that all users employ similar MFSK modulation (with M frequency

tones) with noncoherent demodulation and identical extended RS (n, k,) codes with c,-de-

word length n symbols (n = M) and k, information symbols per codeword. (Refer to the

additional assumptions in the previous section.) Due to the symmetry in the system, we

can equivalently find the probability of the first I receivers decoding correctly, while the

remaining m - I receivers decode in error. In the sequel, we implicitly assume that m > 2.

For m = 1, the model reduces to the single receiver model analyzed in [4].

For FH/SSMA communications, the probability of a coded symbol error is upper-

bounded by the probability of a hit, which is a function of the available frequency slots q

and the number of contending users k, where k > 1. Subsequently, we denote by Ph(q, k)

the probability of a hit. Recall from [41 that for hop-synchronous FH/SSMA systems

Ph(q, k) = I (I - j/q)k - 1  (2.1a)

and for hop-asynchronous systems

Ph(q, k) = 1 -(1 - 2/q)k- 1. (2.1b)

It is assumed that k > m > 2 and q > m > 2 so that the above quantities are guaranteed to

be nonnegative. For asynchronous systems the above upper bound is valid for any number

of symbols per hop (dwell-time) equal or larger than I (slow frequency-hopping).

2.1. Errors-Only or Erasures-Only RS Decoding

The ith receiver receives correctly the transmitted packet, if the number of hits h(i),

for 1 < I < m, satisfies

0 < h(i) < t,

where t denotes the correction capability of the (n, k,) block code (k, is the number of

information symbols and n the total number of symbols per codeword) For pure error-

correction,

t dmin - n-k, (2.2a)
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while, for erasure correction,

t = dmi - 1 = n - k,. (2.2b)

In the synchronous case, each receiver output depends only on other receivers out-

puts during the same dwell time. This applies also to the asynchronous case, if proper

interleaving takes place. Then the total system operation becomes memoryless.

As amplified in Appendix A,

P(l,m - ilk) =

= P(O < h(1) <_t,... ,0< h(l) t,t + 1 < h(l + 1) <n... ,t + 1 < h(m) _ n)

=~~~ .z . ..( )nf (n Znn)
j 12 12" - gm- 1 2--1

2
r n

-- 1n- E nn

P1 .pp2 " (P0 ) 2 M=] (2.3)

where P~n = P(Enn) denotes the probability of the event E,, under which the rn de-

modulator outputs during a particular symbol of the codeword (packet) correspond to the

binary reprcsentation of nn (recall 0 and 1 denote correct and incorrect reception, respec-

tively), and Enn is the number of times the event Enn occurs in one codeword. Of course,

any other correspondence of the above events and the natural numbers would work as well.

Note that in (2.3), all events having same weight have equal probabilities, although this

does not simplify the expression.

The range of f,, for the sums in (2.3) is to be obtained from a Diofantine analysis of

the inequalities:

2 m -1

0< W ) <t i = 1, 2,...I (2.4a)
TIl TIl I

and

n+< .n , i = ±1, 1 +-2,...rn (2.4b)
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where a, = 1 or 0, according to whether the ith component of tic vector event E,, is

1 or 0, that is, it takes part in the ith receiver error count or not. We have to add another

constraint to the m constraints posed by (2.4a,2.4b), namely that

2'n -I
0 < E t''  < n (2.4c)

nn=l

The purpose of this constraint is to ensure that we do not surpass the codeword length n

by permitting highei values of the tnnS.

It remains to find expressions for all P(E,), for nn = 1, 2,..., 2 m . This is equivalent

to finding the probability of having p demodulator outputs correct and rn - p ones in

error during a particular transmitted symbol (of identical order for all receivers), for p =

0, 1,.-. , m. These probabilities should be a function of p, m, k, and q. We denote them

by P.(p, m, q, k). First we find P(Eo) = P,,..., = P,(m, 0, q, k), that is. the probability of

deccding correctly all the simultaneous symbols in all receivers ; recall E0 corresponds to

the vector event (0, 0,... , 0). Because of the symmetry we get

PC ... C = P(cc. c)" PC ... C
Mn-I rn- I

= P(clc..c) . P(cIc c)... P(cIcc) . P(clc) • P(c)

M-I m-2

m

= f [1-P(q-j+1,k-j+1)]. (2.5)
j=1

In the above and in subsequent expressions the following notation is used: P(cfc .. c) or

P(elc..._c), i = 1,2, .., m - 1, denote the conditional probabilities of a particular symbol

of a single receiver being correct or incorrect given that symbols of the same order of i

other receivers are correct; similarly P(e .e c ... c) denotes the conditional probability
3 i

of a particular symbol of j receivers being incorrect given that symbols of the same order

of i other receivers are correct; and P(c..c) or P(c..c) denote the the unconditional

i t
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(absolute) probabilities of a particular symbol of i receivers being correct or incorrect,

respectively. We now find P(E 27 -- 1 ) = Pe..., = P.O, m,q,k). We have

. = P(ele...e)Pe...e

= [1-P(cle..e)1 •P...

P(e...elc). P(c)

P.. P(c) P(C cjc'c)

rn- rn-I

=> P,(O, m, q,k) = P(O,m - 1,q,k) -[1- Ph(q,k)] . P8 (O,m - 1,q - 1,k -1) (2.6)

In these expressions Equation (2.6) is a recursive formula for finding P,(O, m, q, k). The

solution of this equation, as shown in Appendix A, is

P,(O,m,q,k) = 1 + E [(-) (n) -_Pa(q-j l ,k-j+ l )  (2.7)

Proceeding one step further we obtain the more general expression

P(E..) = P(p,m-p,q,k)

= e ... " CC...C
rn-p p

= P(e,..e1c,,.)P C,
in-p p

= P (O,m-p,q-p,k-p).P.(p,O,q,k)

p

= Py[1-Ph(q-j+1,k-J+1)]

+ M - ) [I-Ph(q-p-j+1,k-p-j+1)1]
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(2.8)

The equality P(e.. ejc ,, c) = P.(0, m - p, q - p, k - p) is obtained by observing that
rn-p p

conditioning on a particular symbol of p receivers being correct is equivalent to reducing

the number of available frequencies for hopping q and the number of users k by p. The last

equality in (2.8) is then obtained through substitution from (2.5) and (2.7). Equations (2.3)

and (2.8), together with the constraints posed by (2.4a), (2.4b), (2.4c), give the solution to

our problem. As it becomes clear from (2.3), the exact evaluation of P(l, m - Ilk) requires

the computation of 2' - 1 dependent sums, in which the limits should be found through a

Diofantine analysis of (2.4a),(2.4b), and (2.4c). In addition, the summands are powers of

P(E,,), which can be computed through (2.8). Due to those computational requirements.

exact expressions are nearly impossible to evaluate, for m > 4. However, as the next

sections indicate, useful approximations have been developed with satisfactory accuracy in

different ranges of the various system parameters of interest.

2.2. Inclusion f AWGN and Errors-Only or Erasures-Only RS Decoding

The expression in (2.3) remains valid in its general form; however, the expressions for

Pe ... e C ... change in order to take the effects of AWGN into account. Let us find first

Pc ... c. For that we get

P ... ( '  . (2.9)

p(h)where (..C denotes the previously evaluated PC ... c in (2.5) by counting errors (or

erasures) from hits only, and PN is the symbol error probability of the MFSK due to

AWGN. To find P,. we write

P.. = P(e Ci, ) .P,.e

- P, -P(c) P(_e,,jc)
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= P,(p,q,k) = Pe(ji - 1,q,k) -(1- PA,)[1 - Ph(q,k)]"P(p - l,q - 1,k -1). (2.10)

The recursive equation (2.10) is similar to (2.6) and thus has as solution the expression

P(M,q,k) = 1 + -1() J{(1-PN)[1-Ph(q-j+1,k-j +1)]} (2.11)
t=1 )=I

From that we obtain easily the more general result

P(En) = Pe ... cc ... V = P( ) =c) P c

1. 8, 1.1

= P,(,q- Zk- j.P-..

- (1- ) l (1 - P,,(q-j+ 1,k-j + 1)]

I + E-(-1)l I{(l-pN)fi-Ph(q-v-j+l~kt--,-J+l)]}
=1 l

(2.12)

which gives the desired expression. For our problem, it + V = n.

The probability PN of MFSK symbol errors due to AWGN given by

Al-I Al -1) ( - 1 ) Mn+ lZ _. i 9,2'NfL

PN =7m M + 1 C---T '-0 (2.13)
In=

where Eb/No is the information symbol signal-to-noise ratio and r is the code rate of the

system (r = k,/n).

2.3. Errors and Erasures RS Decoding

In this section, we analyze the case in which all receivers employ combined errors and

erasures decoding. Thus during the minimum distance RS decoding correction of both

errors and erasures is attempted. \Ve assume 'hat erasures happen whenever a hit from

other users occurs and they are detected: errors are caused by AWGN only.

S



It is well-known that any RS code can decode correctly any received word having s

erasures, t errors if these numbers satisfy

2t + s < drain - 1 = n - k, (2.14)

We start the analysis for this case by noting that the basic "simultaneous" events in the

multi-receiver are now defined by x = (xl,... ,xm). -. iere x,, i = 1. m, can take

values c, , s corresponding to correct, error, or erasure symbol, respectively. Again,

because of symmetry, the probability of finding in a particular symbol (or dwell-time)

some receivers in error, some in correct receptio.k, and some in erasure is independent of

the particular ordei of the receivers.

For a given symbol we define

Pr( n, receivcrs in error, n, receivers in erasure, n, receivers correct

Pe...9 ... s c ... c = P(n.,ns,nc) (2.15)

"e

where, of course,

n, + n, + nc = m. (2.16)

To find P(!, m - lk) we notice that the basic difference from the treatment in Section 2.1,

is that now we have three different states in every symbol. So, instead of having 2 ' - 1

sums, we have 3 m - 1 sums. If, we define as En, the event according to which the m

demodulator outputs during the same symbol correspond to the ternary representation of

Tin, where 0 denotes correct reception, 1 denotes an erasure, and 2 denotes an error, and

set (,,, to denote the number of times the event En, occ'irs in one coeeword, then we can

write

P(1,3 r 
--2 -Ik ! 2n

I1 t2 ta3- - t3 m - 1 3"-- 1

-1

1 2 3"'-) ... 3--1



(2.17)

The range of values of f1, f2, .-- , f3,, can be found from the m inequalities:

0 < a( ' "- <n-k, for i= 1,2,...,l (2.18a)
nn=

and
3m--

n- k, + 1< E a'( i) .-(n for i:=l+1,l+2,.-.,m (2.18b)
nn=]

where ann takes values E {0, 1, 2J, depending on what type of event (correct symbol.

erasure, or error) is implied for receiver i E 1_ .... m} from the i-th component of the

ternary representation of nn (identifying the event Enf,); that is, a?,n = 0 for correct

i I for erasures, and a~P =9 for errors. To the above inequalities we mustreception, an.=1fr srs,anann=-

add the condition

0 < n _< n (2.18c)
nn=l

which ensures that the total number of symbols remains smaller than n, the codeword (or

packet) length.

In order to evaluate P(l, m - Ilk), we need to calculate expr-sions of the form

P .. .. , .. ,where 71, +rz,+n ?=m. We can write

'Ie nCP~ " e , a .. a C ... C P(S .4 SIC C4 c<4 c).P(C q CIc z c).-P(c z c) (2.19)

e ,C n. n.tm i n, lle  n' nl

where
TI

c

P(,1-j{(1 - PN)[1 - Ph(q-j + 1,k-J + 1)1} (2.20a)
TI 1=1

nc

P(C elc .c)- fJ{PN[1 - Ph(q - n + 1,-k -+ 1)11 (2.20b)

n, n10

10



P(s .. , sie '.,, e c .. , c)
na ,

=~ ~ 1+ (-) [1-Ph(q-n, -n,-j +l,k-n, -n,-1+l1)]

I=1 .j=1

(2.20c)

so that

P(E,,) = Pe ... e ... s ... c = P(ne,n3 ,nc)

nc

= f{(1-PN)[1-Ph(q-j+1,k-j+1)]}

jJ{PN[1-Ph(q -nc-J + 1,k-nc-j + l)]}

• + E' (-')i I yl-Ph(q-n, -n, 3 j+l,k-n. -n.-+1)A

(2.21)

2.4. Asynchronous FH/SSMA Case

It is straightforward to extend the results of the hop-synchronous case to the hop-

asynchronous one, if we assume that all symbols within each codeword are interleaved. In

the asynchronous case, in addition to the full hits that strike a particular user, we have

partial ones, as well; this increases the probability of a hit to Ph = 1 - (1 - 2/q) k - 1 , as

stated at the beginning of this section. Substituting this for Ph in the above expressions

we obtain the desired expressions for the multireception probabilities P(1, m - Ilk).

3. A NEW APPROXIMATION FOR P(l,m - Ilk)

In the previous section, we derived exact expressions for the probabilities P(1. rn -

Ilk) (1 = 0, 1,... ,rn, m < k). Here we develop an approximation method based on the

Gaussian multivariate distribution. First we present a genera] approximation technique for

P(l, m - Ilk) for systems with general interference covariance matrices. Then we exploit

11



the specific form of the covariance matrix of the interference for the symmetric FH/SSMA

problem to obtain a closed form expression. Finally, we derive the necessary covariance

matrices for the various cases of interest.

3.1 Gaussian Approximation

The computation of P(l,m - Ilk) is essentially a combinatoric problem, which in-

volves keeping track of the bit erasures or errors and declares an error when the count

for a particular user exceeds the correcting capability of the code. This is essentially the

multi-dimensional extension of the binomial counting experiment, which, however, results

in excessive computational complexity, as shown in the previous section. Here we we ap-

proximate the required "multi-nomial" probability distribution with a multidimensional

Gaussian.

Let us define the random variables xti (1 < [ < n,), where n is the number of bits per

packet for the ith among m users of interest (m < k) so that

Xti = 1. if the fth bit (or symbol) of user i is incorrect (due to an erasure or an

error, depending on the decoding which occurs with known probability p)

xti = 0, if the (th bit of user i is correct with probability (1 - p).

The actual calculation of p presents no difficulty and will be carried out in Section 3.3 for

the various case of interest. Now define for user i (1 < i < m) the RV xi such that

n

Xi = E Xt'.

t1]

x, is the number of bit errors or erasures that sender i suffers among his n bits within the

packet (slot). Thus, 0 < xi :_ n. xti is independent of xt,i when f : V,, because of the

random FH patterns assumed. Consequently, x, is the sum of n i.i.d. random variables

and this tends towards a Gaussian distribution for large n [mean np, variance np(l - p)).

If we consider any linear combination of the x,s, say

M

-" £aix,

i=1

12



then M n
\L1t---1 /

n k

-- 5 ai xi,

n

t.

It turns out that the zts are either independent of each other or one-dependent (i.e., zi-1,

zt, z+I are dependent but zt is independent of zt+2, Zt-2,Zf+3, Zf-3, ). Independence

arises if the system is hop synchronous and one-dependence when relative hop offsets are

permitted, as in the hop-asynchronous systems (see Section 3.3.2). In either case, 7 is a

sum of i.i.d. or one-dependent RVs and, as n -- co, tends to have a Gaussian distribution.

Consequently, all xis are jointly Gaussian if the codeword length n is sufficiently large.

Define the m-dimensional column vectors

xIl np
X2 np

and p (3.0)

L XmJ np

Then we have the multivariate Gaussian probability density function (pdf)

1 __) (3.1)
-- - -

V(27,)m I E

where . is the m x m covariance matrix with diagonal elements

a = E{(x -"-)} (3.2)

and off diagonal elements (all of which are equal due to the symmetry of our problem)

b = E {(x, - np)(x, - np)} (3.3)

= E (xti, - P) 5(3 - P) }
13



a and b are calculated in Section 3.3 on the basis of the signaling scheme (FH hop-

synchronous or hop-asynchronous) or on the basis of the decoding scheme and the presence

of AWGN. We know that, for user i to be successful,

0 < i < e

where e is the erasure or error correcting capability of the RS code (e = n - k, or e =

(n - k,)/2, respectively, for RS).

If user i is unsuccessful,

e < xi~ n.

Hence,

Pa(, m - 1k) jjn I... I p,(_)dxl... dXk. (3.4)
10 0 + +1

In the above equation, there are 1 integrals of the form fo and m - I integrals of the form

f n "We define

r o
0
0

e +

:rM --:ie~ }m-l+

n

* rn l

and have

PG(l,m - I/k) , v/(2)-(-) (3.5)

This integral can be simplified, if the exponent is converted from a quadratic to a sum-of-

squares form. This can be materialized through a linear transformation that diagonalizes

14



E- 1. Now E takes the form

a b b .... ... b

b a

b a

a

b b .... ... ... a mx

Therefore,

a- bb b b

a-b 0b

+

0
b . . . . bJ

a-b mxm b b M

and, conse-quently,

= (a -b)I + bLm 1 1 1 .. ],m

or, equivalently,

E= A+uuT

where uT = / [1 1 ... 111,, and A = (a - b)I. Moreover,

E-' =A -  - .(A-'u)(jT A-')

I + L7TA - l u

(41u(uTAU)

- 1 __ ___
T

__

(a-b) (a-b)(a+(m-1)b)

so that, if we define

a I (3.6)
a-b

b
6= (a - b)[a + (m - 1)b] (3.7)
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then

E- 6= I L (3.8)

One way to diagonalize E' is to find its eigenvalues and the corresponding eigenvec-

tors and then create a transformation matrix with the eigenvectors as its columns. The

eigenvalues of E - are given by the equation

det(A I-E - ') = 0.

But b b "

AI-E - 1 = (A -)I +

= (A- )I + B

where B is of rank 1, and

1
det(A I - E - ') = (A-- a) m det(I + (-a--- B )

= (A - )m {1 + trace ((A }

= (A - &)m-(A - (a - b)).

Hence

Ai= A2  Am-, a A (3.9)

and

Am = -rb = Ab (3.10)

16



where

Aa -- 1a-b

and

Ab 1
a + (m - 1)b"

Finally, notice that

det(E) = (a - b)m- [a + (m - 1)b] (3.11)

3.2 The Integral Transform Method

Consider the exponent of the integrand in (3.5). After a shift of variables to account

for the mean, it can be simplified to

1 XT _1  
1 [ X 2 b ) ]

2_ ,- 2(a-b) a+(m-1)bj=1 j=1

Using u = - makes the exponent

2 - a+(m - 1)b E= ]
jj=l

The cross product terms come from the factor

2

But the square in the above equation can be eliminate(t with the help of the following

integral transform (see [5]):

- \/ -2 dy e'e 2L7 (3.12)

with
a2  b (3.13)a + (m - 1)b

17



and
m

S= Zu." (3.14)
j=1

After some manipulations in which we use (3.11)-(3.14), we obtain the basic result

PG(l,m - Ilk)= dy -e [4(z1) - 4(z2 )] .[1- ,(zl) + (z 2 )1n -1  (3.15)

where

= e - yj'g (3.16a)z, = '- -b

Z2 = - (3.16b)

4(x)- C J e- 2 /2du

and e - np is the erasure (or error) correcting capability of the block code employed, shifted

by the mean np. Eq. (3.15) gives a method for calculating Pc(l,m - Ilk) with linear

computational complexity in m. Note that, for the case b < 0 (b being the off-diagonal

elements of the covariance matrix), (3.15) involves 4) evaluated at complex arguments.

This is perfectly legitimate and results in an additional small computational effort. In this

case, the real part of the entity [4)(z,) - 4(z 2 )]'. [1- 4(z,) + "P(z 2 )rn-1 is involved in the

integral of (3.15).

3.3. Derivation of Received Code Vector Means and Covariances

The method developed in Sections 3.1 and 3.2 for approximating the probability

P(I, m - ljk) requires only knowledge of the three quantities np, a, and b. These quantities

are the mean of the received code vector x and the diagonal and off-diagonal terms of

its covariance matrix E [see (3.0)-(3.3)]. Here we evaluate these quantities for FH sig-

naling and the various types of system conditions (hop-synchronous or hop-asynchronous,

presence of AWGN) and decoding schemes (erasures-only, errors-only, and errors/erasures

decoding) of RS codes.
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Each transmitter sends data in packets with n RS symbols per packet. For the jth

symbol of the ith user, the RV xji takes vw.lue 1, if that symbol is either erased or in error,

and 0 otherwise. The probability of xi being 1 is p (to be evaluated separately later for

the two cases). The expression x, = 1 xj, counts the number of errors or erasures per

packet and has mean np; we also need a, as defined in (3.2) and b as defined in (3.3).

Each transmitter hops randomly between q available frequencies with one M-ary sym-

bol transmitted per frequency hop. A "hit" takes place when the frequency at which a

particular user chooses to transmit is also used by one or more other users during a dwell

time. The occurrence of this event can be detected by listening to the channel and con-

ducting a threshold test; then a symbol erasure is declared. Between different users, the

duration of a hop (or dwell time) may be assumed perfectly synchronized, or more real-

istically, as involving relative delays. Noise (AWGN) may also be present in general, but

this is dealt with a little later.

We first evaluate the desired quantities for the noiseless hop-synchronous case in Sec-

tion 3.3.1, then for the noiseless hop-synchronous case in Section 3.3.2; for these cases

errors-only and erasures-only decoding are treated together; finally, we incorporate the

effects of AWGN and treat errors/erasures decoding in Section 3.3.3.

3.3.1 Noiseless Hop-Synchronous FH/SSMA

Since we only have multiple access interference, the decoding employed is erasures

only; however the results are also applicable to errors-only decoding after a trivial change

in the parameter e. The probability of a hit is

p= (-1-k (3.17)

and

a = E{(x, - np)2} = np(1 -p) (3.18)

b = E {(x, -n p)(xj -np)}

=- E{[ (Xti -P)] [ (x -9P)
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n

-S(E{ Xei xe,}I - 9')1

But

E{xtixtj} = Pr{xti = 1, xtj = 1}

= Pr{At,, xti = 1, xe = 11 + Pr{A'), xei = 1, xtj = 1}

where A - is the event that users i and j hop to the same frequency during the eth hop.

Therefore,

E {xtixej} = 1. Pr{.Aj} + Pr{ m users hit i, user j gets hit I Ai}" Pr{AIj}

- {+ 1- ~) [k1 (k- 2)()f (1)k-2-", (1- - 4 )k-2-m)]

= + 1- ){1 - 1- )k -  [ - 1- 1q k-2+ [ 1- ) (1 q 1 ]-2}

(3.19)

and

b n E{xt, xtj} - np2 .  (3.20)

3.3.2 Noiseless Hop-Asynchronous FH/SSMA Channel

In Section 3.3.1, it was assumed that hops between users were perfectly synchronized.

i.e., that there was no overlap between the lth hop of user i and the (I + 1)th hop of

user j, for any i, j. This assumption is not realistic, since we assume that the system is

distributed and not centrally controlled. It is time now to relax that assumption.

Assume that each hop is of total duration T. Let us set a reference point for the

beginning of each hop. Then we assume that the the displacement in time of the beginning

of the hop of any user is an RV uniformly distributed between -T/2 and +T/2.
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First we note that p, the probability that any user is hit while in the /th hop, changes

as follows:

p= (1 2)k-1 (3.21)

Note that xji is independent of xmi, for 1 5 m, due to the random assumption for the

hopping pattern. However, because of chip overlap, x 0 is not independent of Xm,, when

m and 1 differ only by 1. Therefore, we have

a = E{(x, - np)2} = np(l -p) (3.22)

b =E(xj - np)(x, - np)}

E £ (( {) [tx (X ( - P)]

E -(x x)(x- p) + (X1, - p)(X2j - P)

+ (X2, - p)(Xl. - p) + (x2, - P)(X2J - p) + (x2. - p)(x3, - p)

+ (X., - p)(x(._ I)j - p) + (Xni - p)(xn, - p)}.

which, since E{(xj - p)(x(1+m)j - p)} = 0 for any i, j 1, m = 2,3,..., reduces to

b = n(pl - p 2 ) + (271 - 2 )(p2 - p 2 ) (3.23)

where p, = E{xjxb and P2 = E xix(l+ )j}.

Next we derive expressions for p, and P2. In the following, whenever we refer to a hit.

we mean on the /th hops of users i and j.

p, = Pr{xt, = 1,xtj = 1}

= Pr{xt, = 1,x(, = 1i, j hit each other on (th hop)

. Pr{i, j hit each other on (th hop)

+ Pr{ xt, = 1, Xj = 1 i, j do not hit each other on ('th hop}

* Pr{i, j do not hit each other on ('tlh hop)

21



The first term equals 1/q. The second term is equal to

(1- P) Pr{xt = 1, =li, j do not hit each other).

We write the laoter probability as

Z-Pr{ i hit by G, i not hit by G, j is hiti i,j do not hit each other}
G

= Pr{ i hit by GI i, j do not hit each other)

Pr{ j gets hit i hit by G, i,j do not hit each other)

where G refers to all possible groups of the remaining k, - 2 users and all nits pertain to

tile (th hop.

Consider a particular user u from group G and the probability of u hitting j, given

that u hits 1 and i and j do not hit each other. We note that there will be two consecutive

hops (dwell times) of u that overlap in time with the lth hop of i. Out of these two, o,c

or both hit i. Therefore, there are two possible situations: (1) both hops of u overlap with

the Ith hop of j with probability 1/2 (given the uniform distribution of the chip delay of

the users) and (2) only one of these two hops overlaps with j with probability 1/2. Note

that one of the above possibilities has to take place, since the lth hops of i and j do overlap

to some extent. under the asynchronous FH/SS system assumption.

Consider the probability that u hits the lth hop of j, given that (1) above holds, u

hits Z, and 1 and j do not hit each other. This probability is

1 1 1 1 1

2 q-- 2 -1

Also, consider the probability that u hits the hh hop of j, given that (2) above holds, that

u hits i, and that , and j do not hit each other. This will be'

1 1 1 3 1

q -1 2 q-1
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From all the above we surmise that the probability of u hitting the /th hop of j, given

that u hits the lth hop of i and that i and j do not hit each other oil the /th hop, is

1 1 13 1 5 1

2 q-1 2 2q-1 4 q-1

Finally,

a1 = Pr{x 1 i 1, x 1 = 1 i j do not hit each other}

k-2 
) ( k2- [k 2 ( 

( )- 1 
k-2-1]

= 
q -

and thus

qq

p[ = Pr{2) = 1 k(+l)) = 1}

= Pr{.ri = 1, ~z2) = 1f i, j overlap in time}Pr{ i,j overlap in time}

+ Pr{x',, = 1,x(I+l)J = if i, j do n~t overlap in time4Pr{ i. j do not overlap in time}

In the above equation,

Pr{ i,j overlap in tim(e) = Pr{ i, j do not overlap in time) = 1/2

and

Pr x = 1,x(+), = i 1 i, j do not overlap n time) = Pr{x, = 1 }Pr{J' o v = 1} = p2
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Moreovei,

Pr{xji = 1,x(+l)j = 1 i1, j overlap in time}

= Pr{x, = 1, X(J+l 1j = 1i i, j, overlap, hit each other on f + ith hop}

• Pr{ i,j hit each other on f + ith hopli, j overlap}

+ Pr{xji = 1,x(,+)j = 11 i, j overlap, do not hit each other on ( + ith hop}

. Pr{ i, j do not hit each other on t + Ith hopli, j overlap}

From this point on, the evaluation of the quantities of interest proceeds in a similar way

to that for pl and thus it will be omitted. It turns out that

0,2 = Pl .1 (1- 1,xl+j)) = I1i1, j overlap, do not hit each other} = a, (3.26)

where a I is given by (3.24), so that the final result is

1 + 1- 02] + 1 2 (3.27)

The desired quantity b is now obtained from (3.24)-(3.25) and (3.26)-(3.27) upon

substitution in (3.23).

3.3.3 Inclusion of AWGN at Front End of Each Receiver

So far, we have assumed that our channel is noiseless and that we can employ erasures-

only decodin, si.-2e mbol erasures can be detected. If we incorporate noise, the possi-

bility of a symbol error exists. Symbol error can only take place, if there is no erasure due

to multiple-access interference or to hits. Now we shall employ errors/erasures decoding.

We maintain for user ,he RV zti which is set to 1, if the lth bit is an erasure, and the

Wit, which is set to 1, if it is in error. Define xji = zi, + 2wI,. Let

vrn

I: = ... =Il'l

We know that, for user 1 to be successful.

0 < x, < n - k,.
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Using arguments similar to those of the noiseless case, we can prove once again that the xis
are jointly Gaussian, each being the sum of one-dependent variables. We need, therefore,
to find E{xi}; fol this we need E{w 1 } and the probability of M-ary symbol error PN,

which is

PN = PN(M ) = - 1) M mE (.2) b
M = 1 mn 1 " ----r ( 3 .2 8 )

where r is the code rate and Eb/NO the signal-to-noise ratio. Then

E{Jx,} = '=E{zi} + 2 E{w,

=n.[p + 2 .pN(1-P)I

np (3.29a)

where

p' P + (1 -p)pN (3.29b)

and p is given by (3.21) or (3.17) for hop-asynchronous or hop-synchronous FH/SSMA

systems, respectively.

Note that the probability of an erasure E{ziJ does not change with the presence of

noise.

Further we need to calculate a' which is

a' = E{X' 2
} - E{x} 2

= n. [E{(z,, +2w,)2} p' 2j

= n.[E z, 2+4 w, 2} +4 Ef{zuw}p - p 2]

= n-Ip+ 4(1-p).'PN--P,2. (3.30)

We also need b', which is given by

b' = n(pl'-p' 2 ) + ( 2n-2)(p2' -p' 2 ) (3.31)

and for whose computation pl' and P2' ar'- necessary. The fo-mt-i is defined as

P1' = E{xi,} = E{zZj + 4zljw, + 4w,wj }.
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E{zjjzij, is the same with that of the noiseless case, which was dealt with in the previous

section and found to be equal to pl, which is calculated there. Moreover,

E{zIw}i,= PrI{zi = 1, 1 = 11}

= Pr{zji = 1,z1, = 01 q

= [Pr{zji = 11 - Pr{zj, = 1,zzl = 1}] PN

= (p- pl)PN

where p, is given by (3.25). Finally,

E{w 1 u'i1jI = Pr{wti = 1.wj = 1}

= Pr{z = o, zz = 01} 0• A

Combining all the above we obtain

I= p + 4(p -pI)pN+ 41 ) [(1 _ ) (1 2 (3.32)

The other quantity of interest, p2' = E{xlix(l+l),}, is calculated in an identical manner

and is found to be

P2' = E{ztiz(+I), + 4zliw(+I)j + 4uliw(,+l),}

where

= P2

EjZju,(j+i)j} = Pr{z1 , = 1,w(,+l)j = 11

= Pr{zli = 1,z(,+l ) = 0 . q

= [Pr{z,, = 1} -Pr{zi, = 1,zI+1)) = 11 PN

= (p- P2)P-
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and

E{wjjw(+l)j} = Pr{w, = 1 ,w(l+I)j = 1}

= Pr{zi = O,z(,+l)j = 0} -AN

= Pr{w1 = 1,wj3 = 1}

(1 Y') [1Y 1~) 2 -)]J-
Combining the above we obtain

1) (1_ 2 ( 2 1 2 2z33
P2 =P2 +±4 (p - 2.P + 4 - ) Q-)( q*i]kPN (3.33)

The decsired quantity b' is now obtained from (3.32)-(3.33) and (3.29) upon substitution in

(3.31). and

The above results are valid for erasures/errors decoding, when information about

the state of the channel (side information) pertaining to hits from other users is available.

If error-only decoding is employed (in the absence of side information), the results are

simplified considerably. In that case, we use the previous definition of xji to denote the

presence of a error (not an erasure) at the Ith hop. Then the necessary quantities p', a',

and ' are obtained from the quantities p, Pl, and P2 of the asynchronous case (no AWGN)

of the previous section as

P P + (1 - P)PN, (3.34)

where p is given by (3.21) or (3.17) and PN is given by (3.28),

a np'(1 - p'), (3.35)

and
b' = n[pi + (I - pl)pN p2 + (2n - 2)[P2 + Gl - P2)p N '] (3.36)

4. APPROXIMATION BASED ON THE INDEPENDENCE ASSUMPTION

The assumption of independence between the packet errors of the users is commonly

made for simplifying the evaluation of P(1, m-lk). The relevant expressions are given here
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for reference, because they will be used for computing the numerical results. Let e and t be

the erasure and error correcting capability, respectively, of the block code employed, C the

probability of symbol erasure, p' the probability of symbol error for errors-only decoding,

p th- pr-bability cf symbol error for errors and erasures decoding, q(M) the probability of

an M-ary FSK symbol error due to AWGN, and pe(k) the probability of a codeword (or

receiver) error for the typical user. Also, let Ptd(l, m - Ilk) be the probability that exactly

m - I users suffer packet error, given that k users transmit, and that the probability is

computed using the independence assumption. Then we have

Piid,T(l, M - Ilk) = (M) Pd(, m - ljk) (4.1)

and

Piid(l, M - Ilk) = [pe(k)1m- 1 [1 - p,(k)]'. (4.2)

where
n

p,(k) (n) Ell (1 - )n-lL (4.3)
I =e+

with e = n - k, for erasures-only decoding;

p = p,) (( -p,)f-t1 (4.4)
i=t+l

where t = (n - k,)/2, for errors-only decoding; and

pe(k) 
11 ( (n - 1,( - p-) - I2

1=0 12=max{e+ -21 1 ,O0

where e = n - kc, for errors and erasures decoding For example for asynchronous

FH/SSMA with AWGN the parameters E, p', and p take the values

2 < (4.6)
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p = I + (1- E)PN (4.7)

and

p = (1 E)PN (4.8)

where pf, is giver by (9.13).

We can show that, under light traffic conditions (i.e., k/q << 1), the approximation

based on the independence assumption (4.2) is valid for all 1, m, and k. To this end it

suffices to show that P(Enn) = P.(p,m - p,k,q) of (2.8) can be approximated by the

corresponding expression, when all receivers operate independently. Indeed, for k << q

we have

P,(p,m - p,q,k) -- Ph (q,k)]P. + _- (1-Ph(q, k))
,=1 j.=l

[1- Ph(q, k)] p [1- (1 - Ph(q, k))]m - p

-(1 - Ph(q, k)]PPh(q, k) m - P  (4.9)

5. NUMERICAL RESULTS

In this section we present our numerical results and compari.-oas. As explained before,

the exact numerical evaluation of P(1, m - Ilk) becomes prohibitive for m > 4 and so only

results for m = 2 and m = 3 can be presented. Indeed, as it is clear from equation (3),

2' - 1 nested sums are necessary for the computation of P(l, m - Ilk) in the case of errors-

only or erasures-only decoding, whereas 3m - 1 such sums are necessary for the case of

errors/erasures decoding [see (17)]. Since in each sum the number of terms varies between

0 and t or t+I and n, as many as (t+1)2m - 1 or even (t+1) 3 m - 1 terms may be necessary.

assuming n = 2t. This implies that, for a (32, 16) RS extended code and m = 2 receivers.

3 and 8 nested sums axe necessary, respectively, for a total of 173 or 178 terms; while for

m = 3, 7 and 26 nested sums are necessary for a maximum of 177 or 1726 terms. The

cor-esponding numbers for m = 4 are 15 and 80 nested sums (i.e., a maximum of 1715 and

17" ° terms), which are prohibitive for most computers.

All results presented in this section pertain to asynchronous FH/SSMA systems em-

ploying RS (32, 16) extended codes with 32-ary FSK data modulation and noncoherent

29



demodulation. Thus M = n = 32 and k, = 16 for the modulation and code parameters of

interest. The performance of different minimum-distance decoding algorithms is evaluated

including errors-only, erasures-only, and errors/erasures correction decoding. The effect of

AWGN is taken into account in all cases. The number of frequencies available for hopping

is q and m is the number of FH/SS receivers of interest. In all cases, results based on the ex-

act expressions P(, m - Ilk) and results based on the independence approximation (IROA)

PI(1, m - Ilk), or the Gaussian approximation PG(l, rn - Ilk), are presented. Moreover, the

results for the packet (codeword) probabilities P(l, m - Ilk) and Pi(, m- Ilk) are presented

in different subtables as the number of correct packets I changes (I = m, m - 1,-.-, 1,0).

In Tables 1 and 2 we compare the performance of m = 2 and m = 3 receivers employing

different forms of minimum-distance decoding, in particular errors-only, erasures-only, and

errors/erasures decoding, for different values of the information bit signal-to-noise ratio

Eb/No. The total number of contending users is k = 10 and the number of frequencies

q = 100. The superiority of erasures decoding and errors/erasures decoding over errors-

only decoding is established for the range of values of Eb/No considered. The limiting

values of the packet probabilities are essentially achieved already for Eb/No = 10 dB, at

which point all errors are caused by other-user interference. The approximation based on

the IROA appears to be very close to the exact result for most cases. The accuracy of the

IROA appears to be better for P(2, 01k) and P(3, 01k) than it is for P(1, Ilk), P(2, Ilk) or

P(1, 21k); it is also better for errors-only or erasures-only decoding than for errors/erasures

decoding. Finally, accuracy improves, as E 6/IO increases. The exact values of P(I, rn- Ilk)

are missing from Table 2 because the computation is prohibitive; for m = 3, 26 nested

sums and a maximum of 172 terms are necessary in (17).

Tables 3 and 4 illustrate the performance of m = 2 and m = 3 receivers, respectively,

for FH/SSMA systems employing errors-only decoding, as the total number of users k

and hopping frequencies q vary. The information bit signal-to-noise ratio Eb/No = 10

dB. Comparing the exact results with those obtained under the IROA we observe that

the accuracy of the latter is better for P(2,Ok) and P(3,Ok) than for the rest of the

P(l, m-lk)s. For fixed q, as the number of contending users k increases, the approximation

becomes less accurate. However, for large values of k, both P(I, m - Ilk) and Pj(l, m - Ilk)
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become very small. On the other hand, for fixed k, the accuracy improves as q increases.

Overall, the accuracy of the IROA improves as the ratio k/q decreases. This verifies the

analysis of Section 3 under light traffic conditions.

Similarly, Tables 5 and 6 illustrate the performance of m = 2 and m = 3 receivers,

respectively, for FH/SSMA systems employing erasures-only decoding, as the total num-

ber of users k and hopping frequencies q vary. The information bit signal-to-noise ratio

Eb/No = 10 dB. Similar observations to the ones made for Tables 3 and 4 are valid here.

Moreover, the results of Tables 5 and 6 are uniformly better than those of Tables 3 and

4, since erasures-correction decoding is considerably more powerful than errors-correction

decoding for for RS codes (RS codes can correct twice as many erasures as errors).

An interesting fact that holds true in the numerical analysis we have performed is

that P(m, 01k) is larger than P1(m, 01k) in all cases. In other words, IROA seems to give

"optimistic" results in comparison to the exact analysis.

In Tables 7 to 10 the exact results for P(1, m - ljk) are compared to those obtained

via the Gaussian approximation method described in Section 3, the latter is denoted by

PG(l,m - Ilk). The same system assumptions presented at the beginning of this section

hold. As before the results for the packet (codeword) probabilities P(l,m - Ilk) and

PG(l,m - ljk) are presented in different subtables as the number of correct packets l

changes. There is actually a one-to-one correspondence between Tables I and 7 and Tables

2 and 8. There are also similarities in the organization of the results between Tables 3

and 9 and Tables 4 and 10. However, in Tables 9 and 10 the number of simultaneous

transmission" k changes whereas the number of frequencies is held constant at q = 100

and the results are presented for all three types of decoding considered in this report:

errors-only, errors/erasures, and erasures-only decoding.

As it becomes clear from Tables 7 to 10 the Gaussian approximation is not as close

to the exact results as the IROA is, at least for the cases of m = 2 and m = 3 receivers

and n = 32. It appears that the accuracy of the approximation improves as the number

of simultaneous users k increases and in general it is better for larger values of the exact

probabilities.
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6. CONCLUSIONS

For FH/SSMA communications, we presented exact expressions for the multireception

probabilities P(l, m - Ilk) for hop-synchronous and hop-asynchronous systems and various

types of RS decoding. The effects of AWGN were taken into consideration. However, these

expressions are very difficult to evaluate for m > 4, a3 they require computation of 2 ' - 1

or 3
' - 1 sums.

We also established the validity of the IROA for the case q >> k. Additionally, our

numerical analysis indicated that IROA is a good approximation for the multireception

probabilities, for m = 2 and m = 3. The accuracy of the approximation depends on the

specific values of q and k; it improves with decreasing k/q; for q >> k, the corresponding

results are almost identical to the exact ones. Therefore, it appears that IROA gives useful

results, while requiring minimal numerical effort.

The kind of behavior observed so far is expected to be similar for higher values of m, as

well. However, this is only a conjecture at this time and additional work on the derivation

of computationally efficient techniques for the evaluation of P(l, m - ljk) is necessary to

prove this claim.

Note that, in many practical applications, the generated traffic is light. In such cases,

the condition q >> k is easily satisfied and the IROA can be used to obtain the multirecep-

tion probabilities. However, there are also many practical situations, in which q and k are

of comparable magnitude or even k > q and in which the IROA can not be validated. In

such situations, another method for evaluating the multireception probabilities is needed,

since the values of rn that are of interest can be considerably larger than 3 (the practical

computational limit of the exact approach presented in this report).

In our report we also introduced an approximation based on central limit theorems

for multivariate distributions. This Gaussian approximation has low computational com-

plexity and promises to have good accuracy for large n (number of symbols per codeword

or packet). Unfortunately, as our extensive comparisons with the exact results indicated

in Section 5, for the nominal value n = 32 the Gaussian approximation does not yield uni-

formly satisfactory results. We conjecture that the accuracy of the approximation improves

as n increases but we can not prove this since the computational effort for evaluating the
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exact results is prohibitive for large n.

Finally, notice that the approach presented in this report for obtaining the exact results

is only applicable to FH/SS systems. Both the IROA and Gaussian approximations are

applicable to direct-sequence (DS) MA systems but an approach for the exact evaluation

of P(l,m - 1lk) is needed in order to validate the accuracy of the two approximations in

the DS case
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APPENDIX A

Al. Derivation of (2.3)

Here we derive the expression for P(I, ni - Ilk) as a function of the probabilities Pe...c.

Let q, k denote the number of frequency slots and contending users in the slot, respectively.

For receiver i, 1 < i < m, let e. be a vector having 0 in the positions of correct symbol

reception and 1 in the positions of erroneous reception, that is,

Li = (eil,ei2 ,...,eI t ).

For hard decision decoding, the ith receiver decodes correctly the received packet iff

n

0 < 1 ej < t
.=1

while it decodes erroneously iff

n

t + 1 < 1- Cij < n.
j=1

Let us now turn our attention to the interreceiver operation. For the jth transmitted

symbols, for 1 < j < n, we define the vector event Ej as

Ej = (eli, e 2 3 ,---, Cm,).

As each eij takes on two possible values, there is a total of 2" possible Ep, for each

J. As slotted operation is assumed throughout the paper, statistics are the same from

symbol to symbol, so that the description of the system is independent of the particular

symbol j. Thus we can drop the dependence from j in our notation and arbitrarily assign

events E to vectors of symbol events (el, e2 ,... , em). However, for simplicity we choose

the correspondence

Ent = (el,e2,.. ,em)

so that (el, e2,... ,er) is equal to the binary representation of nn. If we define by l, the

number of times a particular event Enn occurs as the index of symbols within a codeword
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j varies (1 < J < n), we obtain, due to the memoryless operation assumption, the result

given by (2.3).

A2. Solution to Recursion (2.6)

Here we prove that P (O, m, q, k), given in (2.7), is the solution to the recursive equa-

tion described by (2.6). For compactness, we denote the binomial coefficients (r) by

Cmn,: .

First we observe that, for the binomial coefficients C,,,, the following recursion is true

Cm+1., CM, I-I + Cm,,. (A2.1)

Then, by direct substitution of (2.7) to the right hand side of (2.6), we get

rn-I

1+ (1)'Cm1,,l ([1- Ph(qj + l.k-j + 1)]

r-
1-P h(q q.k)] 1 + E---(-1)'C .. I1 Ph(q -1 '.l - q-=1

1=11

m--
1--tnm-Ph(q,[k)] - )(Cfl,,i + C,,_l) Ph(q - + k - + 1)]

1=2 J=1

(-1)MC.-I'M-I fl[1- Ph(q- J+ 1,k'- J+ 1)]

m m

1 + -1)c ., f-[1 - P (q -J + 1,k -j + 1)] (A2.2)

From (A2.2) we see that (2.6) has as solution the expression given in (2.7).
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Table 1

Error probabilities computed using exact and IROA models for
asynchronous FH/SSMA with RS (32,16) coding, k=10 and q=100.

(a) Probabilities P (2,01 k) (exact) and P1 (2.01 k) (under IROA)

errors decoding errors/erasures decoding crasures decoding
Lb/No (dB' Exact IROA Exact IROA Exact IROA

6 0.6320 0.6255 0.9900 0.9900 9.9998 0.9998

8 0.8490 0.8465 0.9999 0.9999 0.9999 0.9999

10 0.8633 0.8610 0.9999 0.9999 0.9999 0.9999
12 0.8634 0.8612 0.9999 0.9999 0.9999 0.9999

0.8635 0.8612 0.9999 0.9999 0.9999 .9999

(b) Probabilities P(1,1 1k) (exact) and P,(1,11 k) (under IROA)

errors decoding errors/erasures decoding erasures decoding
Eb/No (dB) Exact IROA Exact IROA Exact IROA

6 0.1588 0.1653 4.176x 10- ' 4.983x 10-3  5.777x 105  5.778x 10-5

8 7.101x 10-2  7.354x 10-2  3.249x 10-6  1.055x 10-5  3.341x 10-6  3.341x 10-6

10 6.462x 1072  6.687x 10-2  2.510Qx 10-6 2.558x 10-6 2.51 x 1076  2.5 Ix 10-6

12 6.454x 10- 2  6.678x 10-2  2.501x 10- 6 2.502x 10- f 2.501x 10-6  2.501x 0--6

,,0 6.454x 10-2  6.678x 10- 2  2.50]x 10-6 2.502x 10- 2.501x 10 6  2.501x 10-6

(c) Probabilities P (0,2 1 k) (exact) and P, (0,2 1k ) (under IROA)

EbNO (dB) errors decoding errors/erasures decoding erasures ,ecoding

E__No (Exact IROA Exact IROA Exact IROA

6 5.018x 10' 4.371x10 -  9.901x 3  2.508 i0-  1.284x 10-  3.339x 10

8 8.915x 10-3  6.389x 10-3  1.460x 10-5  1.113x 10-'0  1.198x 10- L  1.116x -

10 7.438x10 3  5.193x 10-3  9.637x 10-  6.545x 10-1'2  7.660x 10-" 6.305x 10-12

12 7.421x 10-3  5.179x 10-3  1.458x 10-10  6.258x 10-12 7.616x 10- 1  6.258x 10-12

CO 7.421x10 - 3  5.179x10 - 3  7.616x 10-  6.252x 10- 7.616x10-1' 6.258x10-12
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Table 2

Error probabilities computed using exact and IROA models for
asynchronous FH/SSMA with RS (32,16) coding, k=10 and q=100.

(a) Probabilities P (3,01 k) (exact) and P, (3,01 k) (under IROA)

errors decoding errors/erasures decoding erasures decoding
Eb/No (dB) Exact IROA IROA Exact IROA

6 0.5099 0.4947 0.9851 0.9998 0.9998
8 0.7857 0.7788 0.9999 0.9999 0.9999
10 0.8051 0.7990 0.9999 0.9999 0.9999
12 0.8054 0.7993 0.9999 0.9999 0.9999
00 0.8054 0.7992 0.9999 0.9999 0.9999

(b) Probabilities P (2,11 k) (exact) and P, (2,11 k) (under IROA)

Eb/NO (d) errors decoding errors/erasures decoding erasures decoding
Exact IROA IROA Exact IROA

6 0.1121 0.1308 4.958x 10-3  5.776x l0 - 5  5.778x 10- 5

8 6.334x 10 - 2  6.766x 10- 2  1.055x 10-5  3.340x 10-6  3.341x 10-6

10 5.816x 10- 2  6.205x 10-2  2.558x 10-6 2.511x 10-6 2.51 Ix 10-6
12 5.809x 10-2 6.198x 10-2 2.501x 10-6 2.501x 10- 6  2.501x 10-6

0, 5.809x 10 - 2  6.198x 10 - 2  2.501x 10-6 2.501x 10-6 2.501x 10- 6

(c) Probabilities P (1,21 k) (exact) and P1(1,21 k ) (under IROA)

Eb/NO (0) errors decoding errors/erasures decoding erasures decoding
Exact IROA IROA Exact IROA

6 3.678x 10- 2  3.457x 10-2  2.496x 10- 5  1.284x 10-8  3.339x 10- 9

8 7.67x 10-3  5.878x 10- 3  1,l13x I10 - 0  1.198x 10- °  1.1 16x10 - 11

10 6.466x 10-  4.819x 10-  6.545x 1012 7.660x 10-  6.305x 10-12
12 6.452x 10-4 4.806x 10- 3  6.258x 10- 12  7.615x 10-  6.258x 10-12

6.452x 10-3  4.806x 10-3  6.258x 10- 12  7.615x 10- 11  6.258x 10- 1 2

(d) Probabilities P (0,3 1 k) (exact) and Pt (0,31 k) (under IROA)

Eb/NO (dB) errors decoding errors/erasures decoding erasures decoding
E_/No () Exact IROA IROA Exact IROA

6 1.340x 10 - 2  9.139x 10 - 3  1.256x 10- ' 6.117x 10- 12  1.929x 10-1 3

8 1.242x 10-3  5.107x 10-4-  1.175x 10-15  7.264x 10- 13  3.728x 10- 17

10 9.718x 10' 3.742x 10-4  1.674x 10 - 17  1.169x 10- 12  1.583x 10-17

12 9.687x 10 -4  3.727x 10-4 1.566x 10 - 17  8.808x 10 - 1 3  1.565x 10- 17

9.687x 10-4 3.727x 10
- 4  I.5' 10- 1 7  9.580x 10 - 13  1.565x 10 - 17
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Table 3

Error probabilities computed using exact and IROA models for
asynchronous FI-I/SSMA with RS (32,16) coding and error-correction decoding

(Eb/NO = 10 dB)

(a) Probabilities P (2,01 k) (exact) and P, (2,0 1 k) (under IROA)

k =5 k = 10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 4.4x 10-  9.6x 1079  1.6x 10-2  1.3x 10- 29  0.0 0.0 0.0 0.0
50 0.9200 0.9172 0.1065 0.0967 9.07x 10- 7  7.06x 10- 1 2.4x 10- 29  1.9x 10- 29

100 0.9989 0.9989 0.8635 0.8612 7.36x 10-2 6.98x 10-2 2.6x 10-10 2.3x 10-10

(b) Probabilities P (1,1 1k) (exact) and P, (1,1 1k) (under IROA)

k =5 k = 10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 9.8x 10-5  9.8x 10-5  4.1x 10- "5  3.7x 10- 15  0.0 0.0 0.0 0.0
50 3.77x 10-2 4.05x 10-2 0.2045 0.2142 8.39x 10' 8.39x 10-4  4.9x I0- " 4.3x 10-15
100 5.45x 10-4  5.51x 10- 4  6.45x 10- 2  6.67x 10- 2  0.1906 0.1944 1.5x 10-5  1.5x 10-5

(c) Probabilities P (0,21 k) (exact) and P (0,2 1 k) (under IROA)

k =5 k =10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 0.999 0.999 0.999 0.999 1.0 1.0 1.0 1.0
50 4.64 x 10-  1.79x 10- 3  0.4846 0.4748 0.9983 0.9983 0.999 0.999
100 6.09x 10 3.04x 10- 7  7.42x 10- 3  5.18x 10-3  0.5451 0.5413 0.999 0.999

39



Table 4

Error probabilities computed using exact and IROA models for
asynducraGs F-/SSMA wi:'i RS (32,16) coding ana error-correction decoding

(EbINO = 10 dB)

(a) Probabilities P (3,01 k) (exact) and P (3,01 k) (under IROA)

k =5 k =10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 9.3x 10- 1' 9.4x 10- 13  0.0 0.0 0.0 0.0 0.0 0.0
50 0.8863 0.8784 3.97x 10- 2  3.0x 10- 2  1.2x 10-  5.9x 10- '°  0.0 0.0
100 0.9983 0.9983 0.8054 0.7993 2.1x 10-2  1.8x 10-2 4.9x 10- " 3.4x 10- 5

(b) Probabilities P (2,11 k) (exact) and P1 (2,11 k) (under IROA)

k =5 k = 10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA

10 4.35x 10-8 9.62x 10- 9  1.6x 10- 29  1.3x0 -29  0.0 0.0 0.0 0.0
50 3.37x 10- 2  3.88x 10- 2  6.7x 10- 2  6.7x 10- 2  9.1x 10-7  7.1x 10 7  2.4x 10- 29  1.8x 10- 29

100 5.39x 10-4  5.51x 10- 4  5.8x 10- 2  6.2x 10- 2  5.2x 10- 2  5.14x 10- 2  2.5x 10- '°  2.2x 10- '°

(c) Probabilities P(1,2 1k) (exact) and P, (1,2 1k) (under IROA)

k =5 k = 10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 9.8x i0- 5  9.8x 10- 5  4.1x 10-  3.7x 10- 15  0.0 0.0 0.0 0.0
50 3.9x 10- 3  1.7x 10-3  0.1378 0.1476 8.4x 10-4 8.4x 10-4 4.9x 10-1 ' 4.3x 10- 15

100 5.98x 1076  3.04x 10- 7  6.5x 10- 3  4.8x 10-3  0.1386 0.1430 1.5x 10-5  1.5x 10-5

(d) Probabilities P (0,3 1 k) (exact) and P, (0,3 1 k) (under IROA)

k=5 k =10 k=20 k50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 0.999 0.999 0.999 0.999 1.0 1.0 1.0 1.0
50 7.2x 1 --  7.57x 10-  0.3467 0.3271 0.9975 0.9975 0.999 0.999
100 1.14x 10- 7  1.68x 10- 10 9.69x 10- 3.72x 10- 0.4065 0.3982 0.999 0.999
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Table 5

Error probabilities computing using exact and IROA models for
asynchronous FH/SSMA with RS (32,16) coding and erasures-correction decoding

(Eb/No = 10 dB)

(a) Probabilities P (2,01 k) (exact) and P (2,01 k) (under IROA)

k =5 k = 10 k =20 k 50
Exact IROA Exact IROA Exact IROA Exact IROA

10 4.61x 10-2 3.77x 10-2 5.94x 10- 11 6.01x 10- 13  0.0 0.0 0.0 0.0

50 0.9999 0.9999 0.9863 0.9863 0.1565 0.1532 7.49x 10- 13  7.49x 10-13
100 0.9999 0.9999 0.9999 0.9999 0.9797 0.9797 9.17x 10- 3  8.99x 10- 3

(b) Probabilities P (1,1 1k) (exat) and P1 (1,11 1k) (under IROA)
k =5 k =10 k =20 k =50

q Exact IROA Exact IROA Exact IROA Exact IROA

10 0.1481 0.1565 7.75x I0-7  7.75x 10- 7  0.0 0.0 0.0 0.0
50 6.06x 10-7  6.06x 10- 7  6.8 lx 10- 3  6.85x 10- 3  0.2349 0.2382 8.65x 10-7  8.65x 10- 7

100 2.44x 10- 1  2.44x 10- 11  2.50x 10- 6  2.50x 10 1.Olx 10- 2  L.Ox 10- 2  8.56x 10- 2  8.58x 10- 2

(c) Probabilities P (0,21 k) (exact) and P (0,2 1 k) (under IROA)

k =5 k =10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 0.6576 0.6493 0.9999 0.9999 1.0 1.0 1.0 1.0

50 9.73x 10-  3.67x 10- 13  8.81x 10- 5  4.75x 10-  0.3734 0.3703 0.9999 0.9999
100 6.42x 10- 17  5.97x 10- 22  7.62x 10- 11  6.26x 10- 12  1.36x 10-4  1.05x 1074 09195 0.8194
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Table 6

Error probabilities computed using exact and IROA models for
asynchronous FH/SSMA with RS (32,16) coding and erasures-correction decoding

(Eb/NO = 10 dB)

(a) Probabilities P (3,0 1 k) (exact) and P (3,0 1 k) (under IROA)

k =5 k = 10 k =20 k-50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 1.31x 1072  7.32x 10- 3  4.47x 10- 9  4 .66x 10- 19 0.9697 0.9696 0.0 0.0
50 0.9999 0.9999 0.9796 0.9795 6.39x 10- 2 5.99x 10-2 6.48x 10- ' 9  6.48x 10- ' 9

100 0.9999 0.9999 0.9999 0.9999 0.9697 0.9697 9.06x 10-  8.52x 10-4

(b) Probabilities P (2,11 k) (exact) and P, (2,1 1k) (under IROA)

k =5 k = 10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 3.29x 10 2 3.04x 10- 2  5.94x 10- 13  6.04x 10- 13  9.95xi0 - 3  1.OOx 10- 2  0.0 0.0
50 6.06x 10- 7  6.06x 10-7  6.72x 10- 3  6.80x 10-3  9.26x I0 -2  9.32x 10- 2  7.49x 10- 3  7.49x I0 - 1 3

100 2.44x 10- 1  2.44x 10- 1" 2.50x 10-6  2.50x 10- 6  9.95x 10 - 3  1.00x 10- 2  8.27x 10- 3  8.52x 10-

(c) Probabilities P (1,21 k) (exact) and P (1,21 k) (under IROA)

k =5 k= 10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 0.1152 0.1261 7.75x 10- 7  7.75x 10-7  0.0 0.0 0.0 0,0
50 9.73x 10- " 3.67x 10- 13  8.64x 10- 1 4.72x 10- ' 0.1423 0.1449 8.65x 10- 7  8.65x 10- 7

100 6.42x 10- 17  5.97x 10-22  7.61x 10-" 6.26x 10- 12  1.34x 10-4 1.03x 10- 4  7.74x IT 2  7.77x 10- 2

(d) Probabilities P (0,3 1k) (exact) and P (0,3 1k) (under IROA)

k =5 k = 10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 0.5424 0.5232 0.9999 0.9999 1.0 1.0 1.0 1.0
50 1.37x 10- 12  2.23x 10- 19  1.70x 10-  3.28x 10 - 7  0.2314 0.2254 0.9999 0.9999
100 2.78x 10- 12  1.46x 10- 32  9.58x 10- 3  1.56x 10- 17  2.22x 10-6  1.07x 10- 6  0.7422 0.7417
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Table 7

Error probabilities computed using exact and Gaussian models for
asynchronous FH/SSMA with RS (32,16) coding, k=10 and q=100.

(a) Probabilities P (2,01 k) (exact) and PG (2,01 k) (Gaussian)

errors decoding errors/erasures decoding erasures decodingEblNo (dB) Exact Gauss Exact Gauss Exact Gauss

6 0.6320 0.4916 0.9900 0.9865 0.9998 0.9963
8 0.7782 0.7782 0.9999 0.9885 0.9999 0.9894
10 0.8633 0.7979 0.9999 0.9885 0.9885 0.9885
12 0.7982 0.7982 0.9999 0.9885 0.9999 0.9885
cc 0.8635 0.7982 0.9999 0.9885 0.9999 0.9885

(b) Probabilities P(l,l k) (exact) and Pg (1,11 k) (Gaussian)

Eb/No (dB) errors decoding errors/erasures decoding erasures decoding
E___o_(dB)_ Exact Gauss Exact Gauss Exact Gauss

6 0.1588 0.2237 4.176x I0- ' 6.728x 10- 3  5.777x I0 2.848x 10- 3

8 1.035x 10-1  1.034x 10-0 3.249x 10- 6  5.683x 10-3  3.341x 1076  5.242x 10- 3

10 6.462x 10- 2  9.454x 10- 2  2.510x 10-6 5.718x 10-3  2.51 Ix 1076  5.712x 10- 3

12 9.443x 10- 2  9.443x 10- 2  2.50lx 10-6 5.718x 10- 3  2.501x 10- 6  5.718x 10- 3

cc 6.454x 1072  9.443r 102 2.50lx l0-6 5.718x 10 - 3  2.50lx l0 5.718x 10- 3

(c) Probabilities P (0,2 1 k ) (exact) and Pe (0,2 1 k ) (Gaussain)

errors decoding errors/erasures decoding erasures decoding
Eb/No (dB) Exact Gauss Exact Gauss Exact Gauss

6 5.018x 10- 2  5.997x 10 2  9.901x 10- 3  4.671x 10-' 1.284x 10- " 1.175x 10 -

8 1.484x 10- 2  1.484x 10-2  1.460x 10-5  4.707x 10-5  1.198x 10- '0  3.445x 10-5

10 7.438x 10-3  1.296x 10- 2  9.637x 10-8  4.932x 10-5  7,660x 10-  4.912x 10-

12 1.294x 10- 2  1.294x 10- 2  1.458x 10- ") 4.935x 10- ' 7.616x 10- " 4.934x 10-
C- 7.421x 10- 3  1.294x 10-2  7.616x 10- " 4.935x 10-5  7.616x 10-' 1  4.934x 10- 5
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Table 8

Error probabilities computed using exact and Gaussian models for
asynchronous FH/SSMA with RS (32,16) coding, k=10 and q=100.

(a) Probabilities P (3,01 k) (exact) and PG (3,01 k) (Gaussian)

errors decoding errors/erasures decoding erasures decoding
E/N 0 (dB) Exact Gauss Gauss Exact Gauss

6 0.5099 0.3191 0.9798 0.9998 0.9944
8 0.7857 0.6876 0.9829 0.9999 0.9843
10 0.8051 0.7146 0.9828 0.9999 0.9828
12 0.8054 0.7149 0.9828 0.9999 0.9828
*O 0.8054 0.7149 0.9828 0.9999 0.9828

(b) Probabilities P (2,11 k) (exact) and PG (2,11 k) (Gaussian)

Eb/NO (dB) errors decoding errors/erasures decoding erasures decoding
E__No__dB)_ Exact Gauss Gauss Exact Gauss

6 0.1121 0.1714 6.682x 1 3  5.776x 10C5  2.844x 10 3

8 6.334x 10-2 9.059x 10- 2 5.636x 10-3  3.340x 10-6  3.208x 10- 3

10 5.816x 10-2  8.333x 10 2  5.669x 10-3  2.511 x 10-6  5.663x 10 -3

12 5.809x 10- 2  8.324x 10-2  5.669x 10 3  2.501x 10 5.669x 10- 3

5.809x 10- 2  8.325x 10- 2  5.669x 10-3  2.501x 1076  5.669x 10-3

(c) Probabilities P (1,21 k) (exact) and PG (1,21 k) (Gaussian)

4IN 0 (dB) errors decoding errors/erasures decoding erasures decoding
E_/No_(dB)_ Exact Gauss Gauss Exact Gauss

6 3.678x 10- 2  5.163x 1072  4.637x 10-5  1.284x 10-8  1.171x 10
8 7.67x 10- 3  1.287x 10- 2  4.654x 10-5  1.198x 10 - '°  3.417x 10-5

10 6.466x 10- 3  1.121x 10- 2  4.873x 10-5  7.660x 10-1  4.853x 10-5

12 6.452x 10-4  1.119x 10-2  4.875x 10-5  7.615x 10- 1  4.875x 10- 5

,, 6.452x 10- 3  1.119x 10- 2  4.874x 10-5  7.615x 10-11  4.874x 10-5

(d) Probabilities P (0,31 k) (exact) and PG (0,3 1 k) (Gaussian)

Eb/NO (dB) errors decoding errors/erasures decoding erasures decoding
E_,____ (dB) Exact Gauss Gauss Exact Gauss

6 1.340x 10- 2  8.183x 10 3  3.295x 1 7  6.117x 10-' 2  1.353x 10
8 1.242x 10- 3  1.973x 10- 3  5.319x 10-7  7.264x I0 - 13  2.741x 10- 7

10 9.718x 10- 4  1.751x 10 3  5.951x 10-7  1.169x 10-12  5.889x 10- 7

12 9.687x 10-4 1.748x 10 - 3  5.959x 10 -7  8.808x 10-1 3  5.957x 10-7

9.687x 10-4 1.748x 10- 3  5.957x 10-7  9.580x 10- 13  5.957x 10- 7
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Table 9

Error probabilities computed using exact and Gaussian models for
asynchronous FH/SSMA with RS (32,16) coding, Eb/No=lOdB and q=100.

(a) Probabilities P (2,0 1 k) (exact) and PG (2,01 k) (Gaussian)

k errors decoding errors/erasures decoding erasures decoding
Exact Gauss Exact Gauss Exact Gauss

5 0.9989 0.9042 0.9990 0.9044 0.9999 0.9045
10 0.8635 0.7979 0.9152 0.9885 0.9999 0.9885
20 7.36x 10-2 4.015 Ix 10- 2  0.8921 0.9722 0.9797 0.9722
50 2.6x 1 10  1.077x 10" 7.25x 10--6  3.891x 10 - 3  9.17x 10- 3  3.885x 10- 3

(b) Probabilities P (1,11 k) (exact) and PG ( 1 ,1 1 k) (Gaussian)

k errors decoding errors/erasures decoding erasures decodingExact Gauss Exact Gauss Exact Gauss

5 5.45x 10-4  4.5293x 10-2  7.2Ix 1076  4.521x 10- 2  2.44x 10- " 4.516x 10-2

10 6.45x 10- 2  9.454x 10-2  8.27x 10-4  5.718x 10- 3  2.50x I0 -  5.712x 10- 3

20 0.1906 0.1616 1.33x 10- 1  1.381x 1072  L.01x 10- 2  1.379x 1072

50 1.50x 1075  4.931x 10- 6  6.31x 10-3  6.247x 1072  8.56x 10- 2  6.249x I0 2

(c) Probabilities P (0,21 k ) (exact) and PG (0,2 1 k ) (Gaussian)

k errors decoding errors/erasures decoding erasures decoding
Exact Gauss Exact Gauss Exact Gauss

5 6.09x 10-6 5.170x 10- 3  8.32x 10- 5  5.176x I 3  6.42x 10- 17  5.168x I 3

10 7.42x 10-3  1.296x 10- 2  3.75x 10-6 4.932x 10-5  7.62x 10- 1  4.912x 10- 5

20 0.5451 0.6366 2.87x 10-2  1.879x 10- 4  1.36x 10- 4  1.867x 10-4

50 0.9999 0.9999 0.9123 0.8711 0.8195 0.8711
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Table 10

Error probabilities computed using exact and Gaussian models for
asynchronous FHISSMA with RS (32,16) coding, Eb/No=lOdB and q=100.

(a) Probabilities P(3,0 1k) (exact) and PG (3,01 k) (Gaussian)

k errors decoding errors/erasures decoding erasures decoding
Exact Gauss Gauss Exact Gauss

5 0.9983 0.8632 0.8635 0.9999 0.8635
10 0.8054 0.7146 0.9828 0.9999 0.9828
20 2.1Ox 1072  7.880x 10-3  0.9585 0.9697 0.9686
50 4.00x i' - 15  9.0393x 10-16 1.99x 1074 9.06x 104  1.983x 10- 4

(b) Probabilities P (2,1 1k) (exact) and PG (2 ,11 k) (Gaussian)

k errors decoding errors/erasures decoding erasures decoding
Exact Gauss Gauss Exact Gauss

5 5.49x 10-4 4.095x 10- 2  4.087x 10- 2  2.44x 10- 1  4.083x 10-T2

10 5.80x 10- 2  8.333x 10-2  5.669x 10- 3  2.50x 10- 6  5.664x 10- 3

20 5.20x 1 2  3.227x 10- 2  1.363x 10-2  9.95x 10- 3  1.36lx 10-2
50 2.50x 10 - '0 1.078x 10- 11  3.691x I 3  8.27x 10- 3  3.687x 10- 3

(c) Probabilities P (1,2 1 k) (exact) and PG (1,21 k) (Gaussian)

errors decoding errors/erasures decoding erasures decoding
Exact Gauss Gauss Exact Gauss

5 5.98x le 4.336x IV -  4.340x 10- 3  6.42x 10- 17  4.333x 10- 3

10 6.50x 10-3  1.121x 10- 2  4.873x 10-5  7.61x 10- 11  4.853x 10-5

20 0.1386 0.1234 1.855x 10-4 1.34x 10-4 1.843x 104

50 1.50x 10-5  4.931x 10- 5.878x 1072  7.74x 10-2  5.88x 10- 2

(d) Probabilities P (0,31 k) (exact) and PG (0,3 1 k) (Gaussian)

k errors decoding errors/erasures lecoding erasures decoding
Exact Gauss Gauss Exact Gauss

5 1.14x 10 - 7  8.346x 1 -e 8.361x 10-4 2.78x 10-1 2  8.345x 10-4
10 9.69x10- 1.751x 10- 3  5.95lx 10 7  9.58x 10 - 13  5.889x 10 - 7

20 0.4065 0.5073 2.416x 10- 6  2.22x 10-6 2.384x 0-6
50 0.9990 09999 0.8124 0.7422 0.8123
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